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e large class of ordinary linear

differential, equations with constant,-

coefficients, Which involves complex
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arithmetic. Furthermore, belying' .
name'"complex method," it Irs relatively'
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and differentiate polynomial's, ^and td

manipulate. complex numbers algebraical-
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1. -INTRODUCTION

This module considers ordinary linear differential

equations with constant coefficients such as'

y" = 10e2t
,

Y" 7Y",-1. 16Y' 12y F 5e3t,

y"' - y" = 3e t
+ sin t.

1

The standard procedure for finding the gdneral solution to
such eqdations involves two main steps.

. a. First find the general, solution to the aSSociatedr.

-homogeneous equation; tiie resulting solution is called

the homogeneous or complement4rv,9brution to the
original differential equation-. For equations with
constant coefficients, the roots of the associated 3

characteristic polynomial may be used to find linearly
independent solutions involv4pg polynomial, functions,
,exponential functions and/or sine and cosine functions.

b. The second- step is to find particular plutiori to'the
given equation. The methods of variation of parameters
sand undetermined coefficient; are most commonly used. .

While thi forMeemethod is more generally applicable,
the indefinite integtatiOn inv_biy.ed may present severe
dr- unconquerable difficulties. While the -latter methods_
applies to a smaller class of equations,-if i'sometrhat

more tractable because it involves differentiating
elementary functions and solving systems of linear,

'-'algebraic equations.

1.1 Purpose of this Mod le

This modUle describes a third method for finding a
:

particular eolution,.which ij genera', involves complex.
arithmetic: Although the class of equations to which thi.'"
method applies is smaller, it nonetheless contains

funo'tions that appear quite frequently: Furthermore,
belying its name "complex 'method", it is relatively simple
t6 use. The ability to,evaluate and differentiate ..

polynomials, and to manipulate' complex numbers

algebraically, is 'basically all that is required., The
method is described in Sections 2, 3, and 4, The basic
method used in all three sections is.the same, 41thOugh

'complex numbers' appear only in Sections rand 4.
. The key idea' of the method as it appears in*Section 3,

namely, the solution technique which'employs the

substitution bfia complex exponential function for a
sknosoidal funCtion, is presented in Ordinary Differential

1

Equations, by Garrett Birkhoff and.Gian-CarloRota, third
edition, Wiley., 1978; on pp. 74-73. It is also illustrated
in Advanced Enoineerina Mathematics, by Erwin Kreysiiq,
fourth edition, Wiley, 1979,, on pp. 125-128. .

I wopld like to express my appreciation to Professors
Maurice D. Weir and G.R. Blakley for their detailed,

extensive and helpful comments and especially to ProfessOr
: Carr011 O. Wilde for his encoUragement and meticulous

consideration in improving this manuscript.

1.2 Terminology

An ordinary linear differential equation of order n
with constant coefficients has the general form:

, ( 1 ) p(D)yt + ar;_1Dn-1 +
'

+ a
2
D
2

+ a1D a01y= f(t),
,

wherp each 9,4 is areal constant, and an X O. The
function f(ti is called the nonhomogeheous past of thp
differential equation. The auxiliary or characteristic
polynomial associated with Eq. (1) is:.

(2) p(),) = an an + an -1 an -1 + + a2),
2

+ alx.+ ao.

The zeros ot,p(A) are-called the eioenvalues'or-

characteristic roots of the given differential equation.
The general soluiionto the associated homogeneous

differential equation, p(D)y = 0 is called the
complementary or homocieneous.solution of Eq. (1), although,
strictly speaking., pit is not a solution of Eq. (1) at al
Any specific solutiton of Eq: (1) is called a partkculaT
solution.

' 2. THE COMPLEX METHOD

2.1 Discussion of the-Method

The nonhomogeheous part of the first differential -

equation listed, in the,introduction,

y" + y' = 10e2t,

j6 f(t)'= 10e2t. This observation suggests a multiple of
e
2t

as a solution since derivatives of this.expRential
function are also such multiples, so. -try y = Ae . For .

this trial solution

2 2tf" = 2 Ae

and so

y" + le'= 22Ae21 F
Ae2t (22.1.1) Ae2t 5Ae2t.

2
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'. .. / .
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,Thus, wdineed A = 2, becauge y" + y =1.5. 2e2t = 10e 2t , as y = P(La) .

- 'desired. .
_ . .

Ke
at

4

Although this procedure yields the.correct,result, it is a particular 'solution to -the given equation.
does mOt'explcitly.reveal a rel,ationshibetweenIthe final Proof: To vetifithe proposed function
coefficient 2 and the orii.inal goeffifcApAt 10. Howeyer, by

, . __,L_trying the generalexpression e . . y - Keat,_

y - Ae ,

. at
( . :

. ,,first note that its first,n derivatives are given by
as a.candidate for a particulanboLution, a. different light .

is shed 6n the proedeb. ./In this.case, -

. ,y".=
2
Ae

cet

v

and so

11" + 11.1a2Aeat + Aeal.= (a?+1) Aeat.

. 2 O(D)Y = P(D) F.1_ Keat]
Note that ' +1 = p(a) ,. where p(A) is the charactecistic LP(a),,polynomial for the given differential equation; so 'tie last,

.

equation becobes 1 = a-Dn [ I- Keat] + a' ,n -1 [__1_ , at]
it. n p(a) n-lu LP(P)

Keat + ..

Y" + Y T P(a) Aea'.
....

. + alb [1* Real + a0 a4,,Keat
/ '

...

Comparing this equation with the original equation, which ,

has the form ,- ,

,

ii)m.gr ionaat a' 4 1 K:1-1,a4-.1r.\\
y" + y =

tReat,
- n7-1 p(ct) a

a Di a -I- Kaiet-1- Y -i-p(a) ' ./

Where i = ls,2,o.0 . , °

Then substitute y and its derivatives into the left- /

hand side of the given equation and simplify:

wherg-K =-10, and a:= 2( we see that

p(a) A = K ;

or

A = --I-k.
P(a)

Thus, the particular solution'has the form
A

Keat
1

y = he
,

2.2 peoretical Statement 6f the Method

This illustratiofileads to the'first theorem, which
generalizes the solution given above. Note hoWever, that
P(a) cannot be 0.
Theorem 1: Let

1401Y = Keat

be a linear differential equation with constant
coefficients. Let p(A) be its characteristic polynomial.
If p(a7 A 0, then the function

+ a -LI- Kaeat + a --I- Keat
1 P(a) ' 0 P(a)14.

J
r itp(aa) Ke at (aua n +a a

n-1 + ..1 +aata)
nT1 1 0

=
P(a
--L) Keat .p(a)

. = Kea }. . 1

Thus, if p(a) A (lc then the function

y = --I- Kea10
P(a)

does indeed satisfy the differential equation

p(D)y = Keat.

Before proceeding, use this theorem to fi d particular
-solutions to the following differential equations.

ercise I. - -6e2t:

4



Exercise 2 ly" + 25,-= 4e-t

-"Theorem 1 can be eictended to handle equations for
which:p(a) = 0.
Theorem 2: Consider-the same differe9ti'l equation as in

% Theorem 1,.

P(D)y = Ke'
t

.

If p(a) = 0 and p'(a) X 0, then'the.functipn

.

Proof for the c,,ase'p(a) = 0. W(a) g 0.

We verify the proposed solution at we did in Theorem .

., by. substituting the function and its derivatives-into
the.original equation. We have

y = - Kte
at

is a particular soltitilon. More- generally,,. if m is an.
irgnew such that m n, p (m) (a)4X 0 and/p(m-1)(a) =

"(al, = p400 = p(a) =0, then the function

Y =
P

(m)
Ktmet

P (a)

is a particularsolution to the,given equation.

,1

and

,

a0y = a
0

at
Pl(a) ALe r:

i-liat __L__ i at1aiDiy = al Kia e
%,

for i = 1,2,...,n.
.

Upon substitution of these exprpssions into the
formula for p(D)y, ,the re ltA° kng terms can be rearranged
into the two natural gr / ups suggested by the terms of each
a.E4y. 'The two groups can be summed individually to yield

p
n1 .Kea' t (a

1
+ 2a

2
a + 3a3a2 + + nana )'( a)

_ at
Ke (p'.(a)),

P1(a)

and

/

'<teat (a0 t
_

+ a- a
n

)
n

2

p'( a)

= p' (a)(a)
Kteat(P(a).).

.9.
.

r

Since p(a) = 0, the overall sum for p(D)yreduces to

P' a)
Ke

at
(p'(a)) = Kectt:'

(

Therefore, the function

I
/

Y
Kte t_

. f

satisfies the given equationdand hence isa particular
solutio2.

Tice reason for the name "complex method" is that
Theoreffis 1 and 2 remain valid' hen y.1s replaced by a
complek functi9 z of the form

z(t) = u(t) + i v(t)

and by a complex number of the fqrm a + ib, and K is
allowed to represent a complex number. The derivative Of ,

the function z is defined by the natural relation

z'(t) = 111(1 + i v'(t).

,Using this definition and the Euler identity (see ,,

Section 3), we can show that complex exponenstial functions
obey-the usual rule for real unctions:

dt e
d (a+ib)t

= (a+ib)e (`a+ib)t

The proof is sjraightforward, involving only A

differentiationof products of real exponential and
trigonometric fbinctions, but we omit lhe details here.

In Section )2.we-consider tht case in which all
functions and constants are real. APpliCatiOns of. Theorems
1 and 2 in the complex caseare given in Section 3.

Exercise 3 Modify the proof given for the case.p(a) = O,apd Pl(a) =.
0,to obtain a Wiof fore the case pl(a) = p(a) = O. r(a) A O.

Compare your work with the outline of the proof for, the general case,

which is given in the Appendix:.

'2.3 Illustrations
/

Now consider some applications of Theorem 2. If Ke t.
is the inonhomogeneous part, calculate p(A),

P"(.a), L.. until the firstinonzero number is Obtained.
Then find the appropriate 'solution, as illu rated in the
following examples.

Example 1: 7y" + 6y' - 12y = 5e3t.

1 10
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. The characteristic polynomial p(A) is liven by:
.

-
p ( X ) = a3- 72 + 16x - 12_= 0-2)2(X-3)

,
a t

-(4

with

and

P1(x) = 3), 2 - 14 X + 16

a

P"(<A) = 6A -.14.
, ,

k r '
Since+( SeSt

= Keat, we hdve K = S, and a = 4. g

Now p(3) = 0 and p'13) = 3(9) 14(3) +,16. = -I!X 6, so by
Theorem 2 the function .

e
. f .

3: HC3W TO HANDLE NONHQMOGENEOUS PARTS INVOLVING
K cos 6't, K sin Bt

, 1 .
3.1 Euler's Identity

. 0.The complex method can be applied to find a particulap
solution whjil the nonhomogeneous part of tivik given -

. dif ferecitial 'equation is either 1( cos St ar rsin St. By-

Etiler't identity, -..... ,
T

Ste Ste1-- fp'--I
(

3t 1 t
) N

i.s a 1,,rtieviark solution, .
;

'.. Example a: y" - 7y" + 16y' - 12y = 5e2t
, ..

-.
Using the same auxiliary .polynomial'; we find that-. '. *

- P(2-)
.
=.- 0, p'(2) = 0, and p"(2) = 12 14 =- -;2 X D.

. ,....--,-) . / .- .- 1 2 Illustrations and Further txPlariationTlaui,ciihe function - . l c.--

° , The following ex'arnpies demonstritie this use of Eula' s.1:-- k 2 t _ a 2 2t -ta, 2 2t \
y.s.--- yt e - - St e :. e . identity, ' , . _ '. '4.- -

. , , - ,.
.. Sis a particular solution , ,

. 4 I Examine 3; y" +'y =.3 cos 2t. , . i
I.

,.. . _..,
. ...

4. ti'' Her4 K = 3 and 13 = 2, so we form the' corr ponding complex .1 i.
, -

- . .. .7-ercise 4. Find -ea pariiculqr spl4tfon to each of the following J differential equation'
I -

. '' '
.

differential equations:
N zt" + z i= 3e i2t

. . a. y"'- y = 6e-t,', li.., . . .
4 . z

'b. 5y' 4- .6y = 5e-3t . ',and solve it -by ,"apploring Theorem 1. tygi-Rg..-t-1Fe.,,Ilytation of
. \ I Theorem 1, we' have .K = 3, et; i2, andp(X.) = A +' 1 . Thus

c. .y"': Sy' + by .7, 5e31 ' a
.

2
d. -y"1 - y" "= 2et / " :w t P(a) .= P(i2) = (i2) + 1. = -4 + 1 = -3

1 s
, 4 . . ,..'

e. y"'. - y" =. 2. r , I So by TheOre6 1,. .
1

exercise 5.* Construct's linear'diffcrentiai equation wit constant I 4 a

.coefficients such That= 0 a 3ei.2t _ei2tN . N.

, ...""'',.
Ja....0 . 4

X .'
.,; 4

8 ., .4 is a solution to the complex equation we formed. Rewr-it
e

-. .
. . this solution' using Euler's identity:

is atparticttlar`solution. .61iiit:
- .

use prop ties of characteristic

...

.
, ,

polynomials.) .
-.

N. -ei2t = 2t - i sin 2t, -.. .-
, s , . -

. Since the nonhomogeneous part of the given differential
equation is 3 cos 2t, the realpart of th4 expression for
-e 12t ,is taken as the solution of the given equation:

we have .

Ae = cos & + 1 sin .6,, .,

alt = K cos 'St. + i (r:san St)
Since-1E cos St is the, real part and K sin Bt the imaginary
part of Kt J-Bt, s,this exponential form can be used as a first",
step to obtain-. fa cotxpltx function (one of the form u

1
(t) ±

vi(t.)). Then the real part ui (t) of this functi4on is a\

particular solution to the original differential equation
if I; cos St is the nonhomogeneous part of ,the given
equation, and the imaginary part vi (h) is a particular
poltition if K sin St is the givensnonhomogenous apart. '

1

JL.
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O

y =.--cos 2t.

(On, the.other hand, had'the nonhomogeneous part been

3 sin,2t, the solution would have been y = -sin 2t.)
To see why this use of Euler's-identity is valid, note

that we are starting witha differential equation of the
. form

p(D.)y =

U(t)

Or

V(t)

where u(t) = K cos $t and v(t) K sin Bt. We-then form
the associated complex differential equation

p(D) z = u(t) + i v(t).

This equation may be solved using the complex method of
Section 2 because

u(t) + i v(t) = K cos at + i K sin Bt = Kei6t

and because Theorems 1 and 2 remain valid when a represents
any complex number. So, if z1 is a complex functibn that is
asolution of the associated comple'x equation, then

z":+ z 3eit.

In the notation of Theorems 1 and 2 we have a = i. Since

p(i) = +1 = -1 +1 = 0,

. we must use Theorem 2, with = 2X. Then

p1(i) = 2i,

and ,

3teit
z r -1

t
2i 2

c

= it 'Cos t + t.
2 ,

T?

Thus, the solution in y is the real part of z, namely,

y = - t sin t.

In the next example we show how to handle equations
for which p(a) is strictly complex, 1.e.,.of the form a +
bi, where a 0 and-b A 0.

.
.p(D)21. = u(t) + i v(t). ° Example 5: y"' - 'y" = sin t.

. ,

,
.

If zi = ul(t) + i vi(t), then the linearity Allows us to Htre K = 1, $ = 1, p(A) = X3 X2, and we form the complex
write ,-, differential equation

p(D)z1 = p(D)ua + i F(D)vi.

By first equating`these twos expressions for p(D)zi and then
equating the real and imaginary parrs of the resulting,
equation, we obtain . .

p(D)ui. = u(t)

and

p(D)vi ":= v(E) .

-

Thus, the final step is,to take as our solution either the
real or the imaginary pa'rt of the solution function in z,
whichever 1S.appropriate.

The ube of Theorem 2 is illustrated in the following
example. -"

1 ;Lxamole 4: y"..4- y,= 3 cost.

This equation is simiiarto the equation in!e',*pmple 3, and
the first step is t:crfOrm the correspondingw8Omplex
equation '

a

z"' - z" = eit.

Then a = i, and

sd

O .3 ,2 ia) = P(i) = - = -1 + 1,

z =
1

e
it

.1-i

To use EuIeF's identity we must first rationalize the
denominator as follows:

z (1+i) Pit-
(1+1) 1-i

- Jai it
1+1 e

L it
2

e
it

= (12: cos t
2 2
4 sin t)' + ti cos t

2
i sin t)



cos t°- sin t) cgs _t z = s-L e
12+i)t.

z

.g,

The imaginary.part of z yields a particular
'given equation:

,y =5 cos t -+ ,
4

sin t.

1

solution to the

Exercise 6. Convert each of the following Apregsions to tte fbrm

u(t) + i 4t).

a.
2it

3+4i

it
b.

2

4i .

ZZereiSe 7. Find a particular solution to each of the following,

differential equations.

a. y"

.b. y" -

c. y" +

Zy' + y = 5 sin 2t

2y' + y = 3 cos 2t

4y = cos 2t.

3.1 Further Extension

If the nonhomogeneous part of the given
the form Kec't cos Bt or Kee'` sin Bt, we also

particular solution using the comppx method.

,K = KeKe
at

cos Bt + iKe
at

sin Bt = e
at

e
Ist (a + t

Thus, Ke
at

cos Bt is the real part and Kec't sin Bt the
imaginary part of the complex function Kc("4i)t. The
foll'owin'g example illustrates the way we can use this

observation by building,on our previous technique.,

Example 6: y" y r e2tcos t.

Here p(A) = A2 -1, a = 2, 8 =1, and K = 1.
the complex equation

equation is

can find a

Note that

z" - z = e

We, have

p(2 +i) = (2+i)2 - 1 = (4+4i-1)

from Which we obtain the complex solution

(2+i) t

15

Now express z in terms of its real and imaginary parts by
first rationalizing the demoninator and then applying
Euler's identity:

2 - --L- .2-41 e(2+1)t
2+4i '2-41

(2- De(2+1)t

20

2t

10
(1-21)(aos t + i sin t)

.2t
=

10 (cos t +'i sin t - 21 cos t+ 2 sin t)

(15_ e2t
sin t + -1 e 2t cos t)10

+ i (-5 e
2t

cos t + e 2t sin t),

Since the teal part is desired, we have

y
1 2t 2t
5 sin t + e cos t.

1.0

Of
Exercise $. Find a particular solution t9 each of the following

differential equations:

a. y" --y'= ettsin 2t

b. y"' + 2y' - 4y = e-t cos t

_c. y"' + 2y' = e-t sin t.

Exercise 9 Consider the equation

(n) , (n-1)(n)

an-lY alYI
a0y

K

We first form

1 = 2 + 4i ,

11

where K is a constant. Use Theorems 1 and 2 to show that for some

integer m such that 0 < m < n we have

a0 = al = = am-1 = 0 and am ft (4.

and the function

ESL
Y mlam ,

is a particular solution of the 'given equation.

12
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HIMIE1111 ir441411.11101%eta,. on
1 p(p(1} \in 0, P24-14--a-3-=.2...F..

Our fi -nal extension of the complex method obtains when .

the nonhomogeneous part Is of the form

f(t) = <I, K.f (t),.
-

3=1 3 3

where K. is a constants and f). (t) is a function to which
the method already applies. Examples include

et +.2 cos t - e
2t

sin 3t , /

=
1. - y cos t + sin t .

2 +e 2t -3 sin.4t-±cos 2t, . 2
-

2 .)

4: . . o

c) Then superppse the solutions from a) and b):This extension is a direct consequence of the
following general result, which is often called the

. y = y
I

+ y
2

+ 3tet +' cos t + I sin t ."superposition principle". 2

Example 8: y"' -.6y" + lly' + 2e3t sin f.-
_.,,,2toy le

...,

We have , .

.
,

\(A) = X3 - 6X2 +, 11X -6°

and de

we have

y
1 1

-
a

te
t

= 3tet.

b) Next,find a particular solution to the equation
o

Y"' y" = sin t .

This equation was.solved in Example 4, and we have

Theorem 3: If y1 is a solution to the differential
equation

p(D)If = f(t),

y
2
is a solution to the equation

P(D)Y ='tg(t).'

and a andb are ponstdbts, t -n the function ay1 + by2 is a
ablution to the equation

p(D)y = at) 1)9(6,

Probf: By linearity of different tion,

p(D)(ayi + by2) = ap(D)y, bp(D)y2 .

BuCioy hypothesis,

p(D)y1 = f(t) and p(D)y2 = g(t) .

Hence,

p(D)(py, + byir = af(t) + bg(t) ,

which means that ay1 + by2 satisfies the required equation.

ExAmple y"' - y" = 3e
t
+ sin t..

Note that

P(A) = A3 - a2, pl(A) = 3A2 2A

a) First find a particular solution to the equation

Y" - y" = 3e -.

fl

p' (A) = 3A2 - 12A +
.

a) -Consider , a,

y"' 6y" lly' - _7e2t.

Since

we have

K1 = -7; a = 2, p(2) = 0, and p'(2) = -1,

b) Next, let

Since

yl = te
2t

= 7te
2t

.

,

- 6z" 4---11z1 - 6z = 2e(3+i)t.

'K
2

= 2, a = 3 + and p(3+i) = i - 3 , .

we have

_2_ e(3+i)t ((1.1.173))

e
i3+i)t

i -3

. 14



L 3t 3t
=, (-5 5)(e cos t + .i e sin t)

, 3. 3t
= v-5

5
cos t + e sin t)

+`i
5 5

e3t cos t - a
e
3t

sin t).

Thus,

2
=

5
e3t cos t -5 e 3t

sin t.

By superposition,

y = yl + y2 = 7te2t., -
eat

at 2t
&e-- - -2e

2t.

p(a) 3

2. K = 4, a = -1. p(-1).=.-3;

4 . a . K = 6 , a = -1, p(-1) = 0, p'(-1) = -2;

6te
-t-

y - - -3te
t

b. .K = 5, a =-3, p(X) =X2 5X + 6,

3t
-3tCps t - e sin t. -

so p(a) = p(73) = 30 and y
30 6

1 t

d
$xercise 10. Find a particular solution to each of the following

. differential, equations.

yn - 5y' 5e 3t
5e3t

b. y" - 2y' + y = 5 sin 2t - 3et,

c. y"' - 9y" + 27y' - 27y = 4e3t + e4t cos(-0

(4),
d. y + 8y" + 16 = -sin t + cos 2t + et;

A

5. UNIT EXAM

Find'a, particular solution to, each of the following

differential equations:

I. y" + 16y = sin 4t

y" - 4y' + 5y = 3 sin t

3. y" - 3y' +s4y = cos 2t + 3e -4t

4. y"' y". = 3

5. y" + 2y' - 3y = 2e
13t

sin 4t

y"' y" - 8y' - 12y = 3e-2t - 5 cos 3t

6. ANSWERS TO EXERCISES

c. P(3)-= 0, and p'(3) = 1,

5
so

te
3t

y - - te3f.

d.. y = 2te
t

.

e. y= -t -2 . '4

5. We compare the given expression with 'the general form

Kt
Seat

.

-p"(d)

By Theorem:2, with a = 3 and m = 2, we see that p(X) = (X-3)2 is

a reasonable choice for the characteristic polynomial. Then,

p "(A) = 2. and so K = 1/4. Thus, the given function is a

solution of the equalon y" 6y' + 9y = 1/4 e3t . .
o

:1 44 A6.8. ( cos 2t sin 2t) + i (A 1cos'-2t - sin 2t)
5 5

b'
4

t sin 2t
4

t cos 2t).
c-

7.a. Solve z" 2z' + z = 5e2it to obtain

2it

hole
4 .1

y
5 .vt---z-c-----1--rtir-7r--56. 4 3 +4 i

1 p(X) =X - 1. K = -6. a, = 2. . b. y = --2 cos 2t - 12
i sn 2t

25 25

_ 1
c. y - 4 t sin 2t.

-.

8.a. p(A) = X2 1 .

rs. 'y

4rJ

Thus.

P(a) = p(2) = 22 - 1 = 3,

and so

16- 16
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Solve r" - z = e(141i)t:

K = 1, a = 1 406i..aand

..p(1+2i.)= '0+202 - 1

= 4i - 3 1

= 4i 4.

Thus,

(i.+21')t (1+2i)t

4i-4 4(i-1) (i+1)

= e(1+41)t (i+1)
-8

= -1 et cos 2t + 1 et sin 2t
8 '8

+ 1 ( e
t
cos 2t e

t
sin ztici

8 8

We have

L t t
y - e cos 2t - e sin 2t.

l -t'
b. y- e sin t- 1 -te cos t

-t
c. y =t -4 e cos t.

9. Note-that K = Ke
Ot

, so let a = 0 in Theorem

Theoroin 2 then yields the solution

reaOt Ktm

(m) Cm)
p (0) p (0)

2. An application of
.;

if P(m)(G) A 0, and p
(m-1)

(0) = 0 = p'(0) = i3(0).

Since q(0) is the constant term for any polynomial q(t), the

condition on the values at 0 forces am_l'= 0 = ='al = a0.

Thus. p(x)= an An an -1 + + am Am , and hence the

0
isconstant term of p

( ,(A) Is 0. for 0 <' k < m, and the constant

term of p(m)(A) = sillm-1)(m-2) ... (2)(1)a = m! a . Therefore:
m m

Y mla
m

19.a.', y .1 3t + 5te3t

since

4, 1

s

17

es

-1. -it 3t
y - e i and y = Ste .

b. i Y
1 t2 et

= t cos 2t.- I sin 2t-4:.5- t'et ':
'

c. y
.., i.

t
3

e
3t

4 e
4t cos(-t)a i eeet sin(-0,

4

1 6 2

y = t sin t t2 cos 2t + it et.
. -

7. ANSWERS TO UNIT EXAM

5.1 y =s- t cos 4t.

_ $ ..5.2' y - cos t + sin, t.
8

5:3
_a

=
6

sin e
-4t

.

32

5t. y = - t
2

.

2

_Lo -3t -3t-

5.5
e cos 4t

16
e sin4t.

-11-
4.5.6

y
-.101 cos

3t + sin
1014 s

8.

3t-
t2 e2t.

10

APPENDIX

Outline of the- proof'of Theorem 2 for the general 'case

(m)
(a) 'A 0; pC**1

1)
(a) = = p'(a) = p(a) = 0, 1 < m < n .

We wish to verify that

_ ma t
y - Kt e

p (c0

i a particular solution of.the given equation. , In a manner similar

to the way in which we proved Theorem 2, weibegin by finding the

, first n derivatives of y for subsequent substitution into the

original differential equation. In these expressions,

(mk)

denotes the binomial coefficient

k!(m -k)1.1

0
1. 1 P.m,

18



/b.

410Y-- =

aim"

:0
Ktmeat(a )

p(0 (a) 0

." 4%vim, _m-1 _a t,

p
(m)

(n)
"\I" (m)

p (a)'

Ktme--(aa )

m m-2 at
(2a K,n) tm- 1 ea t( 2a a )y' K(2)t e ,0 +

1 , 2=

e. e

0

+ Ktmea t(a2a2)

n 1 at _al_anD y - e + .$..

p(m)(
(n-m)lan

m:2eat
n
an-2

p
(m )

(a)

ca. m-1 at n-1
K( )t e na

n
+ Ktmeat(a

n
an) .(m) 1 (m)p (a) . p -(0)

Substituting these derivatives into the-loriginal equation and

learranging into natural groups, we obtain

keat(p(m)(a))

(m) mi
m eat (m-1)

(a))p(m)(a)
P

Konem72eat(pli(a))

P m)(a) z

K(m)tm:leat(p,(a))

p
(m)

(a)
1

+
.

p(m).(a)

Since the first term is feat .and the rest are all 0. the proposed
solution is verified.

t

,

O

19
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STUDENT FORM 1

Request for :Help

Return to:
EDC/UMAP
55 Chapel St.
Newton, MA 02160

Student: If you have trouble with a specific part of this unit, please fill
out this form and take it to your-instructor for assistance. The informipion
you give will help the author to revise the unit.'

Your Name

Page

Q .13131;er

()Middle

Q tower

OR
Section. f

Paragraph.

Deg'cription of Difficulty: -(Plese be specific)

OR

Unit No.

Model Exam ,

Problem No':

Text

Problem No.

Instructor: Please indicate your repolution of the difficulty in this_box.

Corrected eirors in materials. List' corrections

OGave student better explanation,.example, or proCedure'than in unit.
Give brief outline'of your addition here:

(2) Assisted student in acquiring general learning and.problem-solving
Skills '(iillt using examples from this unit.).

Instructor's Signature

Please use reve%e if necessary.
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STUDENT FORM 2
Return to:
EDC/UMAP_

oUnit Questionnaire

Name Unit No. Date

55-Chape.1 St.

Newton, MA 02160

Institution Course No.

Check the choice for each question that comes closest to your onal opinion.
-

1. How useful was the amount of detail in the unit?

Not enough detqil to understand the unit
Unit would have been clearer with more detail

e Appropriate amount of detail,
Unit was occasionally too detailed, but thiswas not distracting
Too much detail; I was often distracted

4

2. How helpful were'ihe problem answers?

.1*

Sample solutions were too brief; I could not do the intermediate stepe
'Sufficient inforthation was given to solve the problems
Sample solutions were too detailed; rdidn't need them

3. Except for fulfilling the prerequisites,.how much did you use other sources (for
example, instructor, friends,,or other books) in order to understand the'unit?

A Lot Somewhat A Little Not at all

4. How long was this unit in,comperison to the amount of time you generally spend,on
a'lesson (lecture and homework assignment) in a typical math or science course?

Much Somewhat About Somewhat Much
Longer Longer the Same Shorter Shorter

5. Were any of the following parts of the unit confusing or distracting? (Check
as many'as applyt)

Prerequisites -

Statement of skills and concepts (objectives)
Paragraph headings,

Examples
Special AssistanCe Supplement (if present)
Other, please explain

C

6. Were any of the following parts of the unit particularly-helpful?-(CheckNas many

,,as apply.). ,-,

Prerequisites
Statement of skills And doncepts (objectives) . 1

t
. .

.

Examples
Problems
Paragraph headings

' 4 -'' Table of Contents

...-.:....;. . - - -SpeCial Assistance. Supplement (if present).
.

,

-,:- . Other, please explain

Please describe anything in!-the undtthat you did not partiCularly like.

. .

, ..

'Please describe'anything that you ftund,particularly helpful. E lease use th'e back of

this sheet if you need more space.)

9 r


